Source code for BLRun.grnboost2Runner

import os
import pandas as pd
from pathlib import Path
import numpy as np

[docs]def generateInputs(RunnerObj): ''' Function to generate desired inputs for GRNBoost2. If the folder/files under RunnerObj.datadir exist, this function will not do anything. ''' if not RunnerObj.inputDir.joinpath("GRNBOOST2").exists(): print("Input folder for GRNBOOST2 does not exist, creating input folder...") RunnerObj.inputDir.joinpath("GRNBOOST2").mkdir(exist_ok = False) if not RunnerObj.inputDir.joinpath("GRNBOOST2/ExpressionData.csv").exists(): ExpressionData = pd.read_csv(RunnerObj.inputDir.joinpath(RunnerObj.exprData), header = 0, index_col = 0) # Write .csv file ExpressionData.T.to_csv(RunnerObj.inputDir.joinpath("GRNBOOST2/ExpressionData.csv"), sep = '\t', header = True, index = True)
[docs]def run(RunnerObj): ''' Function to run GRNBOOST2 algorithm ''' inputPath = "data" + str(RunnerObj.inputDir).split(str(Path.cwd()))[1] + \ "/GRNBOOST2/ExpressionData.csv" # make output dirs if they do not exist: outDir = "outputs/"+str(RunnerObj.inputDir).split("inputs/")[1]+"/GRNBOOST2/" os.makedirs(outDir, exist_ok = True) outPath = "data/" + str(outDir) + 'outFile.txt' cmdToRun = ' '.join(['docker run --rm -v', str(Path.cwd())+':/data/ --expose=41269', 'arboreto:base /bin/sh -c \"time -v -o', "data/" + str(outDir) + 'time.txt', 'python runArboreto.py --algo=GRNBoost2', '--inFile='+inputPath, '--outFile='+outPath, '\"']) print(cmdToRun) os.system(cmdToRun)
[docs]def parseOutput(RunnerObj): ''' Function to parse outputs from GRNBOOST2. ''' # Quit if output directory does not exist outDir = "outputs/"+str(RunnerObj.inputDir).split("inputs/")[1]+"/GRNBOOST2/" if not Path(outDir+'outFile.txt').exists(): print(outDir+'outFile.txt'+'does not exist, skipping...') return # Read output OutDF = pd.read_csv(outDir+'outFile.txt', sep = '\t', header = 0) outFile = open(outDir + 'rankedEdges.csv','w') outFile.write('Gene1'+'\t'+'Gene2'+'\t'+'EdgeWeight'+'\n') for idx, row in OutDF.iterrows(): outFile.write('\t'.join([row['TF'],row['target'],str(row['importance'])])+'\n') outFile.close()